6-3 Videos Guide

6-3a

- Rectangular-polar conversions
- $x=r \cos \theta$
- $y=r \sin \theta$
- $x^{2}+y^{2}=r^{2}$
- $\tan \theta=\frac{y}{x}$

6-3b
Exercises:

- Identify the curve by finding a Cartesian equation for the curve.
- $r=4 \sec \theta$
- $r^{2} \sin 2 \theta=1$
- Find a polar equation for the curve represented by the given Cartesian equation.
- $4 y^{2}=x$

6-3c

- Common types of polar equations
- $r=a \pm b \sin \theta($ or $\cos \theta)$
- Cardioid if $a=b$
- Dimpled limaçon if $a>b$
- Limaçon with an inner loop if $a<b$
- $r=a \sin n \theta($ or $\cos \theta)$
- Rose with n petals if n is odd
- Rose with $2 n$ petals if n is even
- Circle if $n=1$
- $r^{2}=a^{2} \cos 2 \theta$ (lemniscate)

6-3d

- Testing for symmetry in the polar plane
- With respect to the polar axis: replace $\theta \rightarrow-\theta$
- With respect to the line $\theta=\pi / 2$: replace $\theta \rightarrow \pi-\theta$
- With respect to the pole: replace $r \rightarrow-r$ or $\theta \rightarrow \pi+\theta$

Note: Functions involving the sine function are typically symmetric with respect to the line $\theta=\pi / 2$, and functions involving the cosine function are typically symmetric with respect to the polar axis.
6-3e
Exercise:

- Sketch the curve with the given polar equation by first sketching the graph of r as a function of θ in Cartesian coordinates.
$r=1+2 \cos \theta$

6-3f
Exercise:

- Use a graphing device to graph the polar curve. Choose the parameter interval to make sure that you produce the entire curve.
$r=2+\cos (9 \theta / 4)$

