6-3 Videos Guide

6-3a

- Rectangular-polar conversions
 - $\circ x = r \cos \theta$
 - \circ $y = r \sin \theta$
 - $x^2 + y^2 = r^2$
 - \circ $\tan \theta = \frac{y}{x}$

6-3b

Exercises:

- Identify the curve by finding a Cartesian equation for the curve.
 - \circ $r = 4 \sec \theta$
 - $o r^2 \sin 2\theta = 1$
- Find a polar equation for the curve represented by the given Cartesian equation.
 - $0 \quad 4v^2 = x$

6-3c

- Common types of polar equations
 - $\circ \quad r = a \pm b \sin \theta \ (\text{or } \cos \theta)$
 - Cardioid if a = b
 - Dimpled limaçon if a > b
 - Limaçon with an inner loop if a < b
 - \circ $r = a \sin n\theta \text{ (or } \cos \theta)$
 - Rose with n petals if n is odd
 - Rose with 2n petals if n is even
 - Circle if n=1
 - $\circ \quad r^2 = a^2 \cos 2\theta \text{ (lemniscate)}$

6-3d

- Testing for symmetry in the polar plane
 - With respect to the polar axis: replace $\theta \rightarrow -\theta$
 - With respect to the line $\theta = \pi/2$: replace $\theta \to \pi \theta$
 - O With respect to the pole: replace $r \rightarrow -r$ or $\theta \rightarrow \pi + \theta$

Note: Functions involving the sine function are typically symmetric with respect to the line $\theta=\pi/2$, and functions involving the cosine function are typically symmetric with respect to the polar axis.

6-3e

Exercise:

• Sketch the curve with the given polar equation by first sketching the graph of r as a function of θ in Cartesian coordinates.

$$r = 1 + 2\cos\theta$$

6-3f

Exercise:

• Use a graphing device to graph the polar curve. Choose the parameter interval to make sure that you produce the entire curve.

$$r = 2 + \cos(9\theta/4)$$